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Abstract17

We study the potential for precision electroweak (EW) measurements and beyond-the-Standard18

Model (BSM) searches using cross section asymmetries in neutral-current deep inelastic scatter-19

ing at the electron-ion collider (EIC). Our analysis uses a complete and realistic accounting of20

systematic errors from both theory and experiment, and considers the potential of both proton21

and deuteron beams for a wide range of energies and luminosities. We also consider what can22

be learned from a possible future positron beam and a ten-fold luminosity upgrade of EIC. We23

use the SM e�ective �eld theory (SMEFT) framework to parameterize BSM e�ects, and focus on24

semi-leptonic four-fermion operators, while for our precision EW study we determine how well the25

EIC can measure the weak mixing angle. New features of our study include the use of an up-to-26

date detector design of ECCE (EIC Comprehensive Chromodynamics Experiment) and accurate27

running conditions of the EIC, the simultaneous �tting of beam polarization uncertainties and28

Wilson coe�cients to improve the sensitivity to SMEFT operators, and the inclusion of the weak29

mixing angle running in our �t template. We �nd that the EIC can probe BSM operators at scales30

competitive with and in many cases exceeding LHC Drell-Yan bounds while simultaneously not31

su�ering from degeneracies between Wilson coe�cients.32
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I. INTRODUCTION74

The Standard Model (SM) of particle physics currently describes all known laboratory75

phenomena. All particles predicted by the SM have now been found after the discovery76

of the Higgs boson at the Large Hadron Collider (LHC). No new particles beyond those77

present in the SM have been discovered, and no appreciable deviation from SM predictions78

has been conclusively observed. Despite the enormous success of this theory it contains79

numerous shortcomings. It does not contain an explanation of the dark matter observed80

in the universe nor the baryon-antibaryon asymmetry, and it does not describe neutrino81

masses. It additionally su�ers from several aesthetic issues such as the hierarchy problem82

and an extreme hierarchy of fermion Yukawa couplings. Even the sectors of the theory83

that have been experimentally successful still contain unsatisfying and poorly understood84

features. For example, the exact composition of the proton spin in terms of the spin and85

orbital angular momentum of its constituent quarks and gluons is still poorly known.86

Numerous experimental programs that attempt to address these residual issues in our87

understanding of Nature are either running or under design. Our focus in this manuscript88

will be on the Electron Ion Collider (EIC) to be built at Brookhaven National Lab in Upton,89

New York. The EIC will be a particle accelerator that collides electrons with protons and90

nuclei in the intermediate energy range between �xed-target scattering facilities and high91

energy colliders. It will provide orders of magnitude higher luminosity than HERA, the only92

electron-proton collider operated to date. It will also be the �rst lepton-ion collider with93

the ability to polarize both the electron and the proton (ion) beams, and the �rst collider94

with fast spin-ip capacity. These unique design features will allow a direct extraction of95

parity-violating (PV) asymmetries in the electroweak neutral-current scattering cross section96

associated with either the electron {A (e)
P V { or the proton (ion) spin ip { A (p(D ))

P V . Experi-97

mental uncertainties from e�ects such as luminosity measurement and detector acceptance98

or e�ciency will be substantially reduced due to these capabilities.99

Although the EIC was designed primarily to explore outstanding issues in QCD such100
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as the proton spin issue mentioned above, it additionally has a strong potential to probe101

several aspects of precision electroweak (EW) and beyond-the-SM (BSM) physics as well. It102

can measure the value of the weak mixing angle over a wide range of momentum transfers103

complementary toZ -pole measurements and low-energy determinations. The possibility of104

polarizing both electron and proton/ion beams gives it unique handles on BSM physics. Our105

goal in this manuscript is to provide a detailed accounting of the EW and BSM potential of106

the EIC, with a realistic simulation of anticipated experimental uncertainties. We explore107

the use of the asymmetriesA (e)
P V and A (p(D ))

P V . In addition to determining the BSM reach of108

PV observables, we consider the reach of the lepton-charge asymmetryALC;p (D ) at the EIC109

for the �rst time, assuming a positron beam will become available in the future.110

Since no new particles beyond the SM have so far been discovered, we adopt the Standard111

Model E�ective Field Theory (SMEFT) for our BSM studies. The SMEFT contains higher-112

dimensional operators formed from SM �elds, assuming all new physics is heavier than both113

SM states and the accessible collider energy. The leading dimension-6 operator basis of114

SMEFT for on-shell �elds has been completely classi�ed (there is a dimension-5 operator115

that violates lepton number which we do not consider here). We �nd that the EIC can probe116

the full spectrum of SMEFT operators to the few-TeV level or beyond. The wide variety117

of observables possible at the EIC, which include several asymmetries with either proton or118

ion beams, ensure that no at directions remain in the Wilson coe�cient parameter space,119

unlike at the LHC. Our analysis on the determination of the weak mixing angle, assuming a120

realistic annual luminosity and accounting for all experimental and theoretical uncertainties121

to the best level that can be reached at pre-EIC running stage, found good precision for this122

fundamental SM parameter in a kinematic region not explored before. The precision will123

continue to improve as data are accumulated from the decades-long running of the EIC.124

Our paper is organized as follows: In Section II, we �rst provide a complete descrip-125

tion of deep inelastic scattering (DIS) formalism that includes both SM contributions and126

SMEFT extensions. The DIS cross sections that account for both electron and hadron polar-127

izations are provided in both structure function and parton-model languages. We follow this128

theoretical framework by presenting a basic strategy to measure the di�erent polarization129

components of the cross sections and forming the PV asymmetries at the EIC. Measure-130

ment of the lepton-charge (LC) asymmetry is also discussed. In Section III, we present131

data simulation based on the design of the ECCE Detector (now EIC Detector 1) using132
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a fast-smearing method and event selection criteria, followed by projections of statistical133

precision for PV and LC asymmetries based on the planned annual luminosity of the EIC.134

Generation of pseudo data as well as the uncertainty matrix are presented in Section IV,135

followed by extractions of the EW mixing angle in Section V. In Section VI, we provide ex-136

tensive description of our SMEFT analysis framework, with representative results on single-137

and two-Wilson coe�cient �ts given in Section VII. We conclude in Section VIII. In Ap-138

pendix A, we present novel analysis methods to simultaneously �t PV asymmetries and the139

beam polarization, or LC asymmetries and the luminosity di�erence betweene+ and e�
140

runs. A complete collection of all SMEFT 1- and 2-Wilson coe�cient �t results from this141

study are given in Appendix B.142

II. NEUTRAL-CURRENT DIS MEASUREMENT AT THE EIC143

A. Deep Inelastic Scattering and SMEFT Formalism144

In this section, we give a brief overview of the formalism for DIS and SMEFT. In particu-145

lar, we generalize the SM DIS cross section and asymmetry formulae to include contributions146

from SMEFT operators which encode new physics at an energy level � that lies well beyond147

the electroweak scale. We denote electron scattering o� a nucleus as:148

`(k) + H (P) �! `(k0) + X; (1)

where` stands for an electron or positron, the hadronH stands for either the proton (p) or149

the deuteron (D), and X denotes the �nal state hadronic system. The four momenta of the150

initial lepton, �nal lepton, and the initial hadron are denoted ask; k0, and P, respectively.151

Using the momenta of the initial and �nal state leptons and the initial state hadron, one152

can de�ne the following Lorentz invariant kinematic variables:153

s = ( P + k)2; (2)

Q2 = � (k � k0)2; (3)

x =
Q2

2P � (k � k0)
; (4)

y =
P � (k � k0)

P � l
; (5)

W 2 = ( P + k � k0)2; (6)
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wheres is the center of mass energy squared,Q2 is the negative of the lepton four-momentum154

transfer squared, the Bjorken-x variable is the longitudinal hadron momentum fraction car-155

ried by the struck parton, the inelasticity parametery gives the fractional energy loss of156

the lepton in the hadron rest frame, andW gives the invariant mass of the �nal state157

hadronic systemX . The x; y; s, and Q2 kinematic variables are related to each other as158

Q2 = xy(s � M 2) where M is the mass of the nucleon.159

FIG. 1. The Feynman diagrams for ` + H ! ` + X at the parton level from one-boson exchange

(left) and SMEFT contact interactions (right).

The schematic in Fig. 1 shows the partonic tree-level processes that contribute to Eq. (1).160

These are the contributions to the total tree-level amplitude from single photon exchange,161

single Z 0-boson exchange, and the SMEFT contact interactions. The SMEFT Lagrangian162

that describes these contact interactions has the form163

L SMEFT =
1

� 2

X

r

Cr Or + � � � ; (7)

where the sum over the indexr runs over the set of dimension-6 SMEFT operators and the164

ellipses denote SMEFT operators of mass dimension greater than 6. We restrict our analysis165

to include only the e�ects of dimension-6 SMEFT operators since the higher dimensional166

operators are formally suppressed by additional powers ofE 2=� 2, where E is the typical167

energy scale of the scattering process.Or denotes ther -th dimension-6 operator andCr is168

the corresponding (dimensionless) Wilson coe�cient arising from integrating out the new169

physics degrees of freedom at the �-scale. These Wilson coe�cients can be constrained170

through a comparison of SM predictions with precision measurements of various processes171

studied in a variety of experiments across a wide range of energy scales.172

The subset of dimension-6 operators that we consider in our analysis of DIS are given in173

Table I. We note that there are additional SMEFT operators but they are known to be far174
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Cr Or ~Cr ce
Vr

ce
A r

cu
Vr

cu
A r

cd;s
Vr

cd;s
A r

C(1)
`q O(1)

`q = ( �L L  � L L )( �QL  � QL ) C(1)
`q /4 1 1 1 1 1 1

C(3)
`q O(3)

`q = ( �L L  � � I L L )( �QL  � � I QL ) C(3)
`q /4 1 1 -1 -1 1 1

Ceu Oeu = (�eR  � eR )(�uR  � uR ) Ceu/4 1 -1 1 -1 0 0

Ced Oed = (�eR  � eR )( �dR  � dR ) Ced/4 1 -1 0 0 1 -1

C`u O`u = ( �L L  � L L )(�uR  � uR ) C`u /4 1 1 1 -1 0 0

C`d O`u = ( �L L  � L L )( �dR  � dR ) C`d /4 1 1 0 0 1 -1

Cqe Oqe = ( �QL  � QL )(�eR  � eR ) Cqe/4 1 -1 1 1 1 1

TABLE I. List of SMEFT operators relevant to DIS in the basis of SM �elds before electroweak

symmetry breaking and rexpressed in the vector and axial-vector current basis after electroweak

symmetry breaking: Cr Or = ~Cr
P

f �e � (ce
Vr

� ce
A r

 5)e �qf  � (cf
Vr

� cf
A r

 5)qf + � � � .

better bounded through other data sets such as precisionZ-pole observables, and we neglect175

them here. The above assumptions leave us with the seven Wilson coe�cients associated176

with listed operators which enter the predictions for DIS cross sections and asymmetries.177

As seen in Table I, the SMEFT operatorsOr are expressed in terms of the basis of SM178

�elds before electroweak symmetry breaking. For the purposes of DIS phenomenology below179

the electroweak scale, it is useful to rewrite these SMEFT operators in the vector and axial-180

vector basis using Dirac �elds that describe the massive electrons (e) and quarks (qf ) after181

electroweak symmetry breaking:182

L SMEFT =
1

� 2

X

r

~Cr

n X

f

�e � (ce
Vr

� ce
A r

 5)e �qf  � (cf
Vr

� cf
A r

 5)qf

o
+ � � � ; (8)

where the speci�c values of the vector and axial-vector couplingsce;q
Vk

and ce;q
A k

, respectively,183

for the r -th SMEFT operator follow from the corresponding chiral and avor structure of184

the SMEFT operators. The ~Cr coe�cients are related to the Cr by an overall factor and185

can be �xed by comparing Eqs. (7) and (8). There is freedom to always rede�ne the~Cr186

by absorbing an overall factor into thece;q
Vr

; ce;q
A r

couplings. We specify the exact de�nitions187

we use in Table I. These couplings are analogous to the vector and axial-vector couplings,188

ge;q
V and ge;q

A , of the Z 0-boson but are instead generated from integrating out UV physics189

associated with the scale �.190191

As seen in Fig. 1, the total tree-level amplitude can be decomposed into three contribu-192
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tions193

M = M  + M Z + M � ; (9)

whereM  ; M Z , and M � denote the contributions from single photon exchange, singleZ 0-194

boson exchange, and the SMEFT operators, respectively. In particular,M � =
P

r M r ,195

where the sum over the indexr runs over the amplitudes arising from the SMEFT operators196

listed in Table I. Up to leading order in the SMEFT power counting, where only dimension197

six SMEFT operators that scale as� 1=� 2 are kept, the total amplitude squared can be198

written as:199

jM j2 = M  + 2M Z + M ZZ + 2M  � + 2M Z � ; (10)

whereM  = jM  j2, M ZZ = jM Z j2, 2M Z = M �
 M Z + M  M �

Z , 2M  � = M �
 M � + M � M �

 ,200

and 2M Z � = M �
Z M � + M � M �

Z . These denote the single photon exchange amplitude,201

singleZ 0-boson exchange amplitude, interference between the single photon and singleZ 0-202

boson exhange amplitudes, interference between single photon exchange and the SMEFT203

amplitudes, and interference between the singleZ 0-boson exchange and SMEFT amplitudes,204

respectively. Here we ignore thejM � j2 contribution since it scales as 1=� 4, formally the same205

size as contributions from dimension eight SMEFT operators interfering with the SM. For206

the hadron-level cross sections and asymmetries, these di�erent contributions will give rise to207

corresponding structure functions. In particular, in addition to the usual structure functions208

encountered in SM DIS, new structure functions corresponding to SMEFT contributions209

will arise. Thus, including SMEFT contributions, the DIS di�erential cross section takes210

the general form211

d2�
dxdy

=
2�y� 2

Q4

n
�  L 

�� W ��
 + � Z L Z

�� W ��
Z + � Z LZ

�� W ��
Z +

X

r

� r L r
�� W ��

r +
X

r

� Zr LZr
�� W ��

Zr

o

;(11)

where� is the electromagnetic �ne structure constant. TheL ;Z;Z;r;Zr
�� and W ;Z;Z;r;Zr

�� are212

the leptonic and hadronic tensors, respectively. The �rst three terms on the RHS correspond213

to SM contributions from M  , 2M Z , and M ZZ , respectively, and the last two sets of terms214

correspond to contributions from SMEFT operators, i.e. 2M  � and 2M Z � , respectively.215

For completeness, below we collect some useful results to make the form of the cross section216

explicit. The dimensionless coe�cients� ;Z;Z ; � r , and � Zr are given by217

�  = 1;

9



� Z =
GF M 2

Z

2
p

2��

Q2

Q2 + M 2
Z

;

� Z =
�
� Z

� 2
; (12)

� r =
~Cr

4��
Q2

� 2
;

� Zr = � Z
~Cr

4��
Q2

� 2
;

where GF = 1:1663787(6)� 10� 5 GeV� 2 is the Fermi constant and MZ = 91:1876�218

0:0021 GeV [1] is the mass of theZ boson. The leptonic tensors in Eq. (11) are219

L 
�� = 2

�
k� k0

� + k0
� k� � k � k0g�� � i� e� ���� k� (k0)�

�
;

L Z
�� = � (ge

V � � ege
A )L 

�� ;

LZ
�� = ( ge

V � � ege
A )2L 

�� ; (13)

L r
�� = � (ce

Vr
� � ece

A r
)L 

�� ;

LZr
�� = ( ce

Vr
� � ece

A r
)(ge

V � � ege
A )L 

�� ;

where � e = � 1; 1 denotes the lepton helicity. For positrons, one ips the sign of allge
A and220

ce
Ar terms above, and the overall sign ofL Z and L r . Using these identities for the leptonic221

tensors, Eq. (11) can be written more explicitly as222

d2�
dxdy

=
2�y� 2

Q4
L 

��

n
�  W ��

 � � Z (ge
V � � ege

A )W ��
Z + � Z (ge

V � � ege
A )2W ��

Z

�
X

r

� r (ce
Vr

� � ece
A r

)W ��
r +

X

r

� Zr (ce
Vr

� � ece
A r

)(ge
V � � ege

A )W ��
Zr

o
: (14)

Based on the general Lorentz tensor structure and the available four momenta and the223

nucleus spin vectorS� , the various hadronic tensors are parameterized in terms of structure224

functions as225

W j
�� = ( � g�� +

q� q�

q2
)F j

1 +
P̂� P̂�

(P � q)
F j

2 +
i� ����

2(P � q)

h
P � q� F j

3 + 2q� S� gj
1

i

�
S � q

(P � q)

hP̂� P̂�

P � q
gj

4 +
S � q
P � q

g�� gj
5

i
; (15)

where P̂� � P� � q� (P � q)=q2 and Ŝ� : � S� � q� (S � q)=q2. The index j denotes the226

possibilitiesf ; Z; Z; r; Zr g, and F j
1;2;3 and gj

1;4;5 denote various unpolarized and polarized227

nuclear structure functions, respectively. We have omitted two additional possible Lorentz228

structures in the hadronic tensor, typically denoted as theg2 and g3 polarized structure229

functions, since these terms give a contribution to the cross section that is suppressed by230
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M 2=Q2 when contracted with the leptonic tensor. Thus, we do not consider theg2;3 structure231

functions in the rest of our analysis. The nucleus spin vectorS� satis�es the constraints232

S2 = � M 2 and S � P = 0. For longitudinal polarization, it takes the canonical form:233

S� = � H (jpj; E p
jp j ) where � H is the nucleon helicity, � H = � 1, and the nucleon four234

momentum isP � = ( E; p).235

Based on the structure of the cross section in Eq. (14), in conjunction with the form of236

the hadronic tensor in Eq. (15), it becomes useful to de�ne the following combinations of237

structure functions that also include the SMEFT contributions238

Fi = F SM;NC
i + F SMEFT

i ;

gi = gSM;NC
i + gSMEFT

i ; (16)

where the SM contributions are given by the commonly known NC structure functions239

F SM;NC
i = F 

i � � Z (ge
V � � ege

A )F Z
i + � Z (ge

A + � ege
V )2F Z

i ;

gSM;NC
i = g

i � � Z (ge
V � � ege

A )gZ
i + � Z (ge

A + � ege
V )2gZ

i ; (17)

and SMEFT contributions are given by240

F SMEFT
i = �

X

r

� r (ce
Vr

� � ece
A r

)F r
i +

X

r

� Zr (ce
Vr

� � ece
A r

)(ge
V � � ege

A )F Zr
i ;

gSMEFT
i = �

X

r

� r (ce
Vr

� � ece
A r

)gr
i +

X

r

� Zr (ce
Vr

� � ece
A r

)(ge
V � � ege

A )gZr
i : (18)

The parton-model expressions for the SM structure functions are summarized below. We241

also provide the corresponding expressions for the structure functions arising from the in-242

terference of the SM with SMEFT operators:243

h
F 

2 ; F Z
2 ; F Z

2 ; F r
2 ; F Zr

2

i
= x

X

f

h
Q2

f ; 2Qf gf
V ; gf

V
2

+ gf
A

2
; 2Qf cf

Vr
; 2(gf

V cf
Vr

+ gf
A cf

A r
)
i

(qf + �qf );

h
F 

3 ; F Z
3 ; F Z

3 ; F r
3 ; F Zr

3

i
=

X

f

h
0; 2Qf gf

A ; 2gf
V gf

A ; 2Qf cf
Ar ; 2(gf

V cf
A r

+ gf
A cf

Vr
)
i

(qf � �qf );

h
g

1 ; gZ
1 ; gZ

1 ; gr
1 ; gZr

1

i
=

1
2

X

f

h
Q2

f ; 2Qf gf
V ; gf

V
2

+ gf
A

2
; 2Qf cf

Vr
; 2(gf

V cf
Vr

+ gf
A cf

A r
)
i

(� qf + �� qf );

h
g

5 ; gZ
5 ; gZ

5 ; gr
5 ; gZr

5

i
=

X

f

h
0; Qf gf

A ; gf
V gf

A ; Qf cf
A r

; gf
V cf

A r
+ gf

A cf
Vr

i
(� qf � �� qf ); (19)

whereqf (x; Q2) and � qf (x; Q2) are unpolarized and polarized Parton Distribution Functions244

(PDFs) of quark avor f , respectively, andQf denotes the electric charge in units of the245
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proton charge e. In the parton model, at leading-order (LO), one has for the structure246

functions the Callan-Gross relationsF i
2 = 2xF i

1 and gj
4 = 2xgi

5 for i = ; Z; Z; r; Zr .247

For an ion beam (or nuclear target), the neutron PDFs can be related to the proton PDFs248

assuming isospin symmetry for the valence quarks:249

qu=n (x; Q2) = qd=p(x; Q2);

qd=n(x; Q2) = qu=p(x; Q2); (20)

� qu=n (x; Q2) = � qd=p(x; Q2);

� qd=n(x; Q2) = � qu=p(x; Q2);

while the charm and strange sea quark PDFs are assumed to be identical for the proton and250

the neutron:251

qs=n(x; Q2) = qs=p(x; Q2);

qc=n(x; Q2) = qc=p(x; Q2); (21)

� qs=n(x; Q2) = � qs=p(x; Q2);

� qc=n(x; Q2) = � qc=p(x; Q2);

For the deuteron, an isoscalar bound state of a proton and a neutron, the PDFs can be252

constructed from the proton and neutron PDFs as253

qf=D (x; Q2) =
1
2

(qf=p (x; Q2) + qf=n (x; Q2)) ; (22)

� qf=D (x; Q2) =
1
2

(� qf=p (x; Q2) + � qf=n (x; Q2)) ;

for quark avor f .254

In terms of the generalized structure functions in Eq. (16), which include a dependence255

on the electron helicity � e as seen in Eqs. (17) and (18), one can write the cross section for256

given electron and nucleon helicities, including SMEFT operator contributions, as257

d2� (� e; � H )
dxdy

=
4�� 2

xyQ2

(

xy2F1 + (1 � y)F2 � � e
y
2

(2 � y) xF3 + � e� H (2 � y) xy g1

� � H (1 � y) g4 � � H xy2 g5

)

; (23)

where we have ignored the electron mass and all target mass correction terms that are258

proportional to M 2=Q2.259
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To connect to experimentally measured observables, it is convenient to write the scattering260

cross section of Eq. (23) as the sum of four components that depend on the spin direction261

of the initial electron and hadron: d� 0; d� e; d� H , and d� eH , where eachd� represents the262

di�erential cross section such asd�= (dxdy). The quantity d� 0 is the unpolarized cross263

section,d� e and d� H denote the cross section di�erences between initial electron and hadron264

states of opposite helicity, respectively, andd� eH is the cross sections di�erence between265

initial electron-hadron states with the same and opposite helicities de�ned in the center-of-266

mass frame. These quantities can be formed from Eq. (23) as:267

d� 0 =
1
4

h
d� j � e=+1 ;� H =+1 + d� j � e=+1 ;� H = � 1 + d� j � e= � 1;� H =+1 + d� j � e= � 1;� H = � 1

i
;

d� e =
1
4

h
d� j � e=+1 ;� H =+1 + d� j � e=+1 ;� H = � 1 � d� j � e= � 1;� H =+1 � d� j � e= � 1;� H = � 1

i
;

d� H =
1
4

h
d� j � e=+1 ;� H =+1 � d� j � e=+1 ;� H = � 1 + d� j � e= � 1;� H =+1 � d� j � e= � 1;� H = � 1

i
; (24)

d� eH =
1
4

h
d� j � e=+1 ;� H =+1 � d� j � e=+1 ;� H = � 1 � d� j � e= � 1;� H =+1 + d� j � e= � 1;� H = � 1

i
;

and can be computed in conjunction with Eqs. (16), (17), and (18).268

The SM contribution to the DIS cross sections are (omitting target-mass terms):269

d2� 0

dxdy
=

4�� 2

xyQ2

n
(1 � y)

h
F 

2 � ge
V � Z F Z

2 + ( ge
V

2 + ge
A

2)� Z F Z
2

i

+ xy2
h
F 

1 � ge
V � Z F Z

1 + ( ge
V

2 + ge
A

2)� Z F Z
1

i

�
xy
2

(2 � y)
h
ge

A � Z F Z
3 � 2ge

V ge
A � Z F Z

3

io
;

d2� e

dxdy
=

4�� 2

xyQ2

n
(1 � y)

h
ge

A � Z F Z
2 � 2ge

V ge
A � Z F Z

2

i
+ xy2

h
ge

A � Z F Z
1 � 2ge

V ge
A � Z F Z

1

i

+
xy
2

(2 � y)
h
ge

V � Z F Z
3 � (ge

V
2 + ge

A
2)� Z F Z

3

io
; (25)

d2� H

dxdy
=

4�� 2

xyQ2

n
(2 � y) xy

h
ge

A � Z gZ
1 � 2ge

V ge
A � Z gZ

1

i

� (1 � y)
h
� ge

V � Z gZ
4 + ( ge

V
2 + ge

A
2)� Z gZ

4

i

� xy2
h
� ge

V � Z gZ
5 + ( ge

V
2 + ge

A
2)� Z gZ

5

io
;

d2� eH

dxdy
=

4�� 2

xyQ2

n
(2 � y) xy

h
g

1 � ge
V � Z gZ

1 + ( ge
V

2 + ge
A

2)� Z gZ
1

i

� (1 � y)
h
ge

A � Z gZ
4 � 2ge

V ge
A � Z gZ

4

i
+ xy2

h
ge

A � Z gZ
5 � 2ge

V ge
A � Z gZ

5

io
:

And if also including SMEFT contributions:270

d2� SMEFT
0

dxdy
=

4�� 2

xyQ2

�
(1 � y)(ce

V � r F r
2 + ( ce

V ge
V + ce

A ge
A )� Zr F Zr

2 )
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+ xy2(ce
V � r F r

1 + ( ce
V ge

V + ce
A ge

A )� Zr F Zr
1 )

+
xy
2

(2 � y)(ce
A � r F r

3 + ( ce
V ge

A + ce
A ge

V )� Zr F Zr
3 )

i

d2� SMEFT
e

dxdy
= �

4�� 2

xyQ2

�
(1 � y)(ce

A � r F r
2 + ( ce

V ge
A + ce

A ge
V )� Zr F Zr

2 )

+ xy2(ce
a� r F r

1 + ( ce
V ge

A + ce
A ge

V )� Zr F Zr
1 )

+
xy
2

(2 � y)(ce
V � r F r

3 + ( ce
A ge

A + ce
V ge

V )� Zr F Zr
3 )

i

d2� SMEFT
H

dxdy
= �

4�� 2

xyQ2

X

r

hxy
2

(2 � y)(ce
A � r gr

1 + ( ce
V ge

A + ce
A ge

V )� Zr gZr
1 )

+(1 � y)(ce
V � r gr

4 + ( ce
A ge

A + ce
V ge

V )� Zr gZr
4 )

+ xy2(ce
V � r gr

5 + ( ce
A ge

A + ce
V ge

V )� Zr gZr
5 )

�

d2� SMEFT
eH

dxdy
=

4�� 2

xyQ2

hxy
2

(2 � y)(ce
V � r gr

1 + ( ce
A ge

A + ce
V ge

V )� Zr gZr
1 )

+(1 � y)(ce
A � r gr

4 + ( ce
V ge

A + ce
A ge

V )� Zr gZr
4 )

+ xy2(ce
A � r gr

5 + ( ce
V ge

A + ce
A ge

V )� Zr gZr
5 )

�
: (26)

If a positron beam becomes available at the EIC, one can measure cross sections of both271

e+ H and e� H cross sections and study the di�erences. Again neglecting target mass terms272

and writing SM and SMEFT contributions all together, we have:273

d2� e+

0

dxdy
�

d2� e�

0

dxdy
=

4�� 2

xyQ2
ge

A � Z

h
xy(2 � y)

�
F Z

3 � 2ge
V � Z F Z

3

�i

�
8�� 2

xyQ2

�
(1 � y)ce

A ge
A � Zr F Zr

2 + xy2ce
A ge

A � Zr F Z
1

+
xy
2

(2 � y)(ce
A (� r F r

3 + ge
V F Zr

3 � Zr ))
i

d2� e+

e

dxdy
�

d2� e�

e

dxdy
=

4�� 2

xyQ2
ge

A � Z

h
2(1 � y)

�
� F Z

2 + 2ge
V � Z F Z

2

�
� 2xy2

�
F Z

1 � 2ge
V � Z F Z

1

�i

+
8�� 2

xyQ2

�
(1 � y)ce

A (� r F r
2 + ge

V � Zr F Zr
2 ) + xy2ce

A (� r F r
1 + ge

V � Zr F Zr
1 )

+
xy
2

(2 � y)(ce
A ge

A � Zr F Zr
3 )

i

d2� e+

H

dxdy
�

d2� e�

H

dxdy
=

4�� 2

xyQ2
ge

A � Z

h
2y (2 � y)

�
� gZ

1 + 2ge
V � Z gZ

1

�i

+
8�� 2

xyQ2

hxy
2

(2 � y)ce
A (gr

1 � r + ge
V gZr

1 � Zr )

+(1 � y)ce
A ge

A � Zr gZr
4 + xy2ce

A ge
A � Zr gZr

5

�

d2� e+

eH

dxdy
�

d2� e�

eH

dxdy
=

4�� 2

xyQ2
ge

A � Z

h
2(1 � y)

�
� gZ

4 + 2ge
V � Z gZ

4

�
� 2xy2

�
� Z gZ

5 � 2ge
V � Z gZ

5

�i

14



+
8�� 2

xyQ2

hxy
2

(2 � y)ce
A ge

A � Zr gZr
1

+(1 � y)ce
A (� r gr

4 + ge
V � Zr gZr

4 ) + xy2ce
A ge

A (� r gr
5 + ge

V � Zr gZr
5 )

�
(27)

In this study, we focus on measurements of both parity-violating and lepton-charge asym-274

metries. The parity-violating asymmetry can be formed either by comparing right-handed275

and left-handed electron scattering from unpolarized hadrons, referred to as \unpolarized276

PV asymmetry":277

A (e)
P V �

d� e

d� 0
; (28)

or by comparing unpolarized electron scattering o� right-handed and left-handed hadrons,278

referred to as \polarized PV asymmetry":279

A (H )
P V �

d� H

d� 0
: (29)

If a positron beam becomes available in the future, the lepton-charge asymmetry, de�ned as280

the unpolarized DIS cross section asymmetry between electron and positron beams:281

ALC ;H =
d� e+

0 � d� e�

0

d� e+

0 + d� e�

0

; (30)

will provide additional constraints on SMEFT interactions. On the other hand, the double-282

spin asymmetry,A (eH ) � d� eH
d� 0

, is the primary observable to study the nucleon spin structure283

but is not within the scope of this work. Similarly, a complete list of lepton-charge asym-284

metries that includes lepton polarization dependence can be found in [2], but they provide285

similar constraints to SM and SMEFT studies as the unpolarized asymmetry de�ned in286

Eq. 30 and are not discussed in this work.287

B. Measurement of Parity-Violating Asymmetry at the EIC288

In DIS experiments utilizing an electron beam of polarizationPe and a hadron beam of289

polarization PH , the measured di�erential cross section is290

d� = d� 0 + Pe d� e + PH d� H + PePH d� eH ; (31)

where Pe and PH have the same sign as the respective beam helicity,� e and � H , and can291

take the values� 1 6 Pe; PH 6 1. The various cross section components in Eq. (31) are292

given in Eqs. (25).293
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The PVDIS asymmetry can be formed by ipping the spin direction of either the electron294

beam or the ion beam. For the EIC, beams of opposite polarizations will be injected into the295

storage rings alternately, and thus each of the signs of both electron and ion polarizations296

is ipped periodically on a short time scale. This is in contrast to HERA, where data297

were taken with positive, then negative electron polarization, with such long time intervals298

in between that runs with opposite electron polarizations are essentially two independent299

experiments.300

We express the measured DIS event counts during a certain beam helicity state as301

N ++ = adetL++
�
d� 0 + jP++

e jd� e + jP++
H jd� H + jP++

e jjP++
H jd� eH

�
(32)

N + � = adetL+ �
�
d� 0 + jP+ �

e jd� e � j P+ �
H jd� H � j P+ �

e jjP+ �
H jd� eH

�
(33)

N � + = adetL � +
�
d� 0 � j P � +

e jd� e + jP � +
H jd� H � j P � +

e jjP � +
H jd� eH

�
(34)

N �� = adetL ��
�
d� 0 � j P ��

e jd� e � j P ��
H jd� H + jP ��

e jjP ��
H jd� eH

�
; (35)

where ij = ++ ; + � ; � + ; �� represents the electron and the proton helicity states with302

their time sequence depending on the helicity pattern of the beam injection,L ij stands for303

the integrated luminosity, and P ij
e and P ij

H are the electron and the proton (or ion) beam304

polarizations during the corresponding helicity bunchij . The adet factor represents the305

detector phase space, acceptance and e�ciency. In the simplest case, if we assume both306

beam polarizations, the luminosity, and detector e�ciency and acceptance do not vary with307

time, then308

d� 0 =
1
4

�
d� ++ + d� + � + d� � + + d� ��

�
; (36)

d� e =
1

4jPej

�
d� ++ + d� + � � d� � + � d� ��

�
; (37)

d� H =
1

4jPH j

�
d� ++ � d� + � + d� � + � d� ��

�
; (38)

d� eH =
1

4jPejjPH j

�
d� ++ � d� + � � d� � + + d� ��

�
; (39)

where we have de�ned the experimentally measured cross sectiond� ij � N ij =Lij =adet. The309

PVDIS asymmetry due to electron spin ip can be extracted from data by taking the ratio of310

the cross sections. Because spin ips of both electron and hadron beams will be carried out311

at very short time scale, theadet term can be assumed as a constant and cancels out when312

forming the asymmetry, and we can extract the asymmetry from experimentally measured313
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yields, de�ned asY ij � N ij =Lij :314

A (e)
P V �

d� e

d� 0
=

1
jPej

Y ++ + Y + � � Y � + � Y ��

Y ++ + Y + � + Y � + + Y ��
; (40)

and that due to proton (ion) spin ip can be similarly extracted as315

A (H )
P V �

d� H

d� 0
=

1
jPH j

Y ++ � Y + � + Y � + � Y ��

Y ++ + Y + � + Y � + + Y ��
: (41)

The design of the EIC requires that the point-to-point luminosity uncertainty to be at 10� 4
316

level. Therefore, the dominant experimental uncertainty would come from electron and317

proton (ion) polarimetry, for A (e)
P V and A (H )

P V , respectively.318

C. Measurement of Lepton-Charge Asymmetry at the EIC319

Unlike PV asymmetries which can be formed by comparing scattering yields of right-320

handed vs left-handed electron or hadron scattering on a short time scale, measurement321

of the LC asymmetry requires comparison between electron runs and positron runs, and322

thus relies on two independent cross section measurements. To reduce the uncertainty in323

the measurement ofALC;H , we can reverse the polarity of the magnet to minimize the324

systematic uncertainty due to di�erences ine� and e+ detection. In this case, the main325

experimental systematic uncertainty will come from the luminosity di�erence betweene�
326

and e+ running, which is assumed to be 2% (relative in luminosity, absolute inALC;H ) in327

this analysis.328

III. PROJECTION OF PARITY-VIOLATION AND LEPTON-CHARGE ASYM-329

METRY DATA330

A. EIC Simulation with ECCE Detector Con�guration331

We usedDjangohevent generator [3] (version 4.6.16 [4]) that includes full electromagnetic332

and electroweak radiative e�ects to generate 20-million (20 M) Monte-Carlo (MC) events for333

each of the four beam energy and two beam type combinations: 18� 275(137), 10� 275(137),334

10 � 100, and 5� 100 GeV for ep (eD) collisions, respectively. For the deuterium ion335

beam, the energy speci�ed is per nucleon. In lieu of a full GEANT-based simulation, a fast336

smearing method was applied to inclusive electron events in theDjangoh output, and the337
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physics cross section and parity-violating asymmetries were calculated event-by-event using338

a modi�ed user routine of Djangoh. The number of the scattered DIS electrons was then339

calculated using the cross section information and the expected integrated luminosity after340

correcting for bin migration.341

The detector fast smearing was obtained from a single-electron gun simulation. Res-342

olution spectra were determined for 57 evenly-spaced bins for the pseudo-rapidity range343

� = ( � 3:5625; 3:5625) and 1 GeV-wide bins in the transverse momentumpT . For each344

Djangoh-simulated event, smearing in the electron momentump and polar and azimuthal345

angles� and � were randomly picked from the corresponding spectrum and applied to the346

event, which were used to determine the detected kinematics of the event. While the smear-347

ing spectra were not exactly Gaussian-shaped, they were �tted with a Gaussian function348

and the �tted RMS values extracted for illustration purposes, see Fig. 2.349

FIG. 2. RMS values for fast-smearing spectra obtained from single electron-gun simulation of July

2021 concept of ECCE. The unit for � � and � � are radians.
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Using the fast-smearing method, we generated 10 M MC events to study the kinematic350

coverage over the full phase space. An additional 10 M events were generated withQ2
min =351

50 GeV2 for where DIS events have the most impact on the extraction of the weak mixing352

angle. The drawback of the fast smearing method is that no selection of the hadronic state353

was implemented. Methods utilizing hadronic �nal states such as the double-angle method354

may provide better DIS event identi�cation for certain kinematic range and thus improve355

analysis precision.356

Bin migration of inclusive scattering electrons due to internal and external radiative ef-357

fects were studied with fast-smearing simulation and treated using the \R matrix" unfolding358

method [5]. Background reactions were studied using the hadronic �nal state generated by359

Djangoh (with Q2
min = 1:0 GeV2), and another Monte-Carlo simulation of photoproduction360

events generated byPythia (version 6.428 withQ2
min = 0). All events were passed through361

the ECCE full simulation. We found the highest background events to occur at highy362

values, and these events were rejected at the event selection stage, see next section.363

B. Event Selection364

For the 20 M fast-smearing events, event selection criteria were applied to choose DIS365

events (Q2
det > 1:0 GeV2), to avoid regions with severe bin migration and unfolding uncer-366

tainty ( ydet > 0:1), to avoid regions with high photoproduction background (ydet < 0:90), to367

restrict events in the main acceptance of the ECCE detector where the fast-smearing method368

is applicable (� det > � 3:5 and � det < 3:5625), and to ensure high purity of electron samples369

(E 0 > 2:0 GeV). Here the subscript "det" implies the variables were calculated using the370

detected information of the electron. The projected values and statistical uncertainty for371

A (e)
P V and A (H )

P V after unfolding are shown respectively in Fig. 3 and 4 for 18� 275 GeVep372

for an integrated uncertainty of 100 fb� 1.373

C. Integrated Luminosity374

To account for realistic running conditions, the annual luminosity { ten times the \high375

divergence con�guration" value as shown in Table 10.1 of the Yellow Report (YR) [6] { were376

used. More speci�cally, the integrated luminosity values are assumed to be 15.4, 100, 44.8,377
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FIG. 3. Projection for A (e)
P V (left), and dA(e)

P V;stat =A(e)
P V after unfolding (right) for 18 � 275 GeV ep

collision, with event selections criteria applied. An integrated luminosity of 100 fb� 1 and an 80%

electron polarization were assumed.

FIG. 4. Projection for A (p)
P V (left), and dA(p)

P V;stat =A(p)
P V after unfolding (right) for 18 � 275 GeV ep

collision, with event selections criteria applied. An integrated luminosity of 100 fb� 1 and an 70%

proton polarization were assumed.

36.8, and 4.4 fb� 1 for 18 � 275(137), 10� 275(137), 10� 100, 5� 100, and 5� 41 GeV378

ep (eD) collisions, respectively. As a comparison with the weak mixing angle extraction379

presented in the YR, we also carried out projections for 100 fb� 1 18 � 275 GeV ep and380

10 fb� 1 18 � 137 GeV eD collision as the \YR reference point". We abbreviate theep381

pseudo data sets as P1, P2, P3, P4, P5 and theeD pseudo-data sets as D1, D2, D3, D4,382

D5, see Table II. The YR reference point is denoted P6. Simulated pseudo-data sets with383

polarized hadrons are indicated as �D1{5 and �P1{6, while positron data sets are referred384
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to as LD1{5 and LP1{6 (with \L" for Lepton charge).385

D1 5 GeV � 41 GeV eD, 4:4 fb� 1 P1 5 GeV � 41 GeV ep, 4:4 fb� 1

D2 5 GeV � 100 GeV eD, 36:8 fb� 1 P2 5 GeV � 100 GeV ep, 36:8 fb� 1

D3 10 GeV� 100 GeV eD, 44:8 fb� 1 P3 10 GeV� 100 GeV ep, 44:8 fb� 1

D4 10 GeV� 137 GeV eD, 100 fb� 1 P4 10 GeV� 275 GeV ep, 100 fb� 1

D5 18 GeV� 137 GeV eD, 15:4 fb� 1 P5 18 GeV� 275 GeV ep, 15:4 fb� 1

P6 18 GeV� 275 GeV ep, 100 fb� 1

TABLE II. Energy and luminosity con�gurations assumed for the EIC in our analysis. P6 is the

YR reference setting.

D. Statistical Uncertainty Projection for PV Asymmetries386

For a given value of integrated luminosity, the statistical uncertainty of an asymmetry387

measurement is388

dAstat ;measured =
1

p
N

(42)

whereN is the total number of events detected, assumed to be approximately equally divided389

between the two scattering types { either between left- and right-handed electron beam, or390

between left- and right-handed proton (ion) beam, or between positron and electron runs.391

The unfolding process increases the statistical precision only slightly for the region where392

the relative statistical uncertainty on the asymmetry is the most precise.393

If the asymmetry originates from polarization (as for the case of PV asymmetries), we394

must correct for the beam polarization:395

dA(e)
stat ;PV =

1
jPej

1
p

N
; and dA(H )

stat ;PV =
1

jPH j
1

p
N

: (43)

For A (e)
P V projection, an electron beam polarization ofPe = 80% with relative 1% systematic396

uncertainty from the electron polarimetry were assumed. Similarly, forA (H )
P V projection,397

a proton (ion) beam polarization ofPH = 70% with relative 2% systematic uncertainty398

from the proton (ion) polarimetry were used. An illustration of the relative precision of PV399

asymmetries is provided in Figs. 3 and 4. The statistical uncertainty ofA (H )
P V is rather large400

because of the much smaller size ofA (H )
P V than A (e)

P V .401
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E. Statistical and QED Uncertainty Projection for Lepton-Charge Asymmetries402

As described in Section II C, to measure lepton-charge asymmetryALC;H , one can reverse403

the polarity of the magnet to minimize the systematic uncertainty due to di�erences ine�
404

and e+ detection. In this case, the main experimental systematic uncertainty will come from405

the luminosity di�erence betweene� and e+ running, which is assumed to be 2% (relative406

in luminosity, absolute in ALC ) in this analysis. If the detector magnet polarity is reversed,407

then the detection of DIS positrons would be very similar to that of DIS electrons, and408

all data simulation, event selection, unfolding, etc, described in Section III A applies. The409

statistical uncertainty in ALC is thus determined by the luminosity ofe+ running, which we410

assume to be one-tenth that of the electron beam. Note that beam polarization and thus411

polarimetry uncertainties do not a�ect ALC measurements.412

The EW physics reach ofALC is further clouded by the di�erence ine� vs. e+ DIS cross413

sections due to QED higher order e�ects. We calculated the value ofALC using Djangoh414

version 4.6.19 in both the Born LO (that includes one-boson exchange only) and NLO415

radiated mode (that includes higher order EW and QED e�ects), see Fig. 5. The di�erence416

of NLO � (minus) Born is taken as an estimate of QED NLO e�ects and the uncertainty is417

assumed to be a relative 5%.418

FIG. 5. Calculation for ALC at the Born (LO) (left) and NLO (right) level for e+ p vs. e� p collision

at 18 � 275 GeV. The LO calculation includes onlyZ interference term which is of main interest

of this study. The NLO calculation includes box-diagrams which introduces a large QED e�ect to

the asymmetry and is e�ectively a background to the EW and SMEFT study presented here.

Because of the moderateQ2 reach of the EIC, the 2% absolution uncertainty from lu-419

22



minosity measurement is a dominating systematic e�ect for the uncertainty ofALC;H . In420

Appendix A 1, we present a method to simultaneously �t the luminosity term with SMEFT421

coe�cients; however, we found this method yields 15 to 20% weaker SMEFT constraints.422

F. Projection for High-Luminosity EIC423

In addition to the nominal luminosity expected for the EIC, we also carried out projections424

considering the possibility of an additional factor ten increase in the luminosity, the so-called425

high-luminosity EIC (HL-EIC). Assuming all experimental systematic e�ects remain the426

same, we scale the projected statistical uncertainty of asymmetry observables described in427

the previous section by the factor 1=
p

10. For beam energies with lower luminosity (hence428

larger statistical uncertainty) or asymmetries of smaller sizes such asA (H )
P V , the factor 10429

increase in luminosity will push the physics reach one step further. On the other hand,430

for beam energies with already-high luminosity and observables where systematic e�ects431

dominate over statistical ones, such asA (e)
P V for 10 � 275 GeV ep and 10� 137 GeV eD432

collisions andALC;H , the impact from the luminosity increase of HL-EIC on the physics433

reach is marginal.434

IV. PSEUDO DATA GENERATION AND UNCERTAINTY MATRIX435

A. Pseudo Data for Parity-Violating Asymmetries436

We discuss �rst the two PV asymmetry cases: the polarized electron asymmetries with437

unpolarized hadronsA (e)
P V and polarized hadron asymmetries with unpolarized electronA (H )

P V .438

The uncertainties are from three sources: statistical� stat , experimental systematic� syst439

(mainly due to particle background and also includes other imperfection of the measurement)440

that is assumed to be fully uncorrelated, and beam polarimetry� pol that is assumed to be441

fully correlated within data of the same
p

s and beam type. For thebth bin, with given442

p
s, x, and Q2 values and using the nominal PDF set under consideration, we �rst compute443

the theoretical SM prediction, (APV )theo
SM;0;b. Combining the given uncertainties in quadrature444

separately for uncorrelated and correlated ones, we obtain a pseudo-experimental asymmetry445
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value by446

(APV )pseudo
b = ( APV )theo

SM;0;b + rb

r

� 2
stat ;b +

h
(APV )theo

SM;0;b

� � sys

A

�

b

i 2
+ r 0

r h
(APV )theo

SM;0;b

� � pol

A

�

b

i 2

(44)

where rb and r 0 are random numbers chosen from a normal distribution of mean 0 and447

standard deviation 1. Note that the correlated errors are incorporated using a single random448

number (r 0) across all the bins. The systematic uncertainties are� syst=A = 1%, � pol=A = 1%449

for A (e)
P V , and � pol=A = 2% for A (e)

P V .450

B. Pseudo Data for Lepton-Charge Asymmetries451

We next consider unpolarized electron-positron asymmetries with unpolarized hadrons,452

the lepton-charge (LC) asymmetries. The uncertainties are from three sources: statistical453

� stat , experimental systematic� syst mailing due to background that is assumed to be fully454

uncorrelated, luminosity di�erence betweene+ and e� runs � lumi that is fully correlated455

within data of the same
p

s and ion beam type, and QED higher-order e�ect� QED NLO ,456

taken as 5% of theALC di�erence between calculated NLO and Born (LO) values. In457

analogy with Eq. (44), for the LC asymmetries, we write458

(ALC )pseudo
b = ( ALC )theo

SM;0;b + rb

r

� 2
stat +

h
(ALC )SM;0;b

� � sys

A

�

b

i 2
+ � 2

QED NLO ;b + r 0� lumi ;b

(45)

C. Uncertainty Matrix459

The uncertainty matrix, � 2, for a given data set withNbin bins is anNbin � Nbin symmetric460

matrix. It consists of two parts, which we call � 2
0 and � 2

pdf :461

�
� 2

�
bb0 =

�
� 2

0

�
bb0 +

�
� 2

pdf

�
bb0 : (46)

The �rst part of the matrix, � 2
0, is constructed using all the uncertainty components462

(statistical, systematic, polarimetry or luminosity, QED) other than the PDF uncertainties.463

All uncertainties that enter � 2
0 must be absolute; relative uncertainties are converted to464

absolute ones by multiplying the theoretical SM prediction,A theo
SM;0;b, computed using the465
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central member of the PDF set taken into account. The �rst part of the matrix then takes466

the form467

� 2
0 =

0

B
B
B
B
B
B
@

� 2
1 � 12~� 1~� 2 � � � � 1Nbin ~� 1~� Nbin

� 2
2 � � � � 2Nbin ~� 2~� Nbin

. . .
...

� 2
Nbin

1

C
C
C
C
C
C
A

sym

(47)

where, for the PV asymmetries, we have for the diagonal elements468

� 2
b = � 2

stat ;b +
h
(APV )theo

SM;0;b

� � sys

A

�

b

i 2
+

h
(APV )theo

SM;0;b

� � pol

A

�

b

i 2
(48)

and for the o�-diagonal elements469

~� b = ( APV )theo
SM;0;b

� � pol

A

�

b
: (49)

For the LC asymmetries, we have for the diagonal elements470

� 2
b = � 2

stat ;b +
h
(ALC )theo

SM;0;b

� � sys

A

�

b

i 2
+ � 2

lumi ;b + � 2
QEDNLO ;b (50)

and for the o�-diagonal elements471

~� b = � lumi ;b: (51)

Here, b and b0 are bin numbers and we assume full correlation for uncertainties originating472

from beam polarimetry or luminosity: � bb0 = 1 for all b and b0.473

The second part of the uncertainty matrix, � 2
pdf , is built using the same procedure for474

both PV and LC asymmetries by taking into account di�erences between the theoretical SM475

asymmetry prediction computed at the nominal PDF member,A theo
SM;0, and theoretical SM476

asymmetry predictions evaluated at all other members of the PDF set under consideration,477

A theo
SM;m , wherem = 1; 2: : : NPDF with NPDF the total number of PDF sets or replicas available.478

For Hessian-based PDF sets, the diagonal and o�-diagonal elements can be collectively479

written as480

�
� 2

PDF

�
bb0;Hessian

=
1
4

NPDF =2X

m=1

(ASM;2m;b � ASM;2m� 1;b)(ASM;2m;b0 � ASM;2m� 1;b0) : (52)

And for replica-based PDF sets:481

�
� 2

PDF

�
bb0;replica

=
1

NPDF

NPDFX

m=1

(A theo
SM;m;b � A theo

SM;0;b)(A theo
SM;m;b0 � A theo

SM;0;b0): (53)
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D. Comparison of uncertainty components482

We present in this section the various uncertainty components that enter the SMEFT483

analysis. We also investigate the total uncertainties combined in quadrature that contribute484

to the diagonal entries of the uncertainty matrix.485

1. Individual uncertainty components486

We begin by considering the individual components of the uncertainties. We investigate487

the e�ects of sea quarks in the analysis by de�ning a valence-only approximation for the488

PDFs. The tag ud in the plot labels is the valence-only approximation where only up and489

down quark contributions are considered in the hadronic cross section, whereasuds indicates490

that up, down, strange, and their antiquarks are taken into account. Note that for the data491

sets involving unpolarized deuteron with theud tag, there will be no uncertainty from PDF492

as deuteron PDFs, de�ned in terms of proton and neutron PDFs using isospin symmetry,493

cancel when analytically forming asymmetries in the valence-only approximation. Note that494

for experimental systematic uncertainties other than those from beam polarimetry, both 1%495

and 2% are shown in all �gures of this section, although the 1% value is used in the results496

presented.497

Fig. 6 shows the comparison of the uncertainty components for the data set D4 in the498

ud and uds scenarios. For PDFs, we useNNPDF3.1 NLO [7] in the unpolarized case499

and NNPDFPOL1.1 [8] in the polarized case throughout. Only (x; Q2) region relevant for500

SMEFT analysis is shown, though the full region is used for the extraction of the weak mixing501

angle. Thex-axis of these plots is ordered by bin number; these are ordered �rst from low to502

high Q2, then from small to largex within each Q2 bin, leading to the observed oscillatory503

behavior. When we turn on the sea quark contributions, the unpolarized deuteron data sets504

receive nonzero but highly suppressed PDF uncertainties, indicating that the assumption505

of deuteron PDFs completely cancelling is a reasonably good approximation. The right506

panel shows that even after including sea quarks, the PDFs are still the smallest uncertainty507

component. This indicates that potentially poorly determined sea quark and strange quark508

distributions have little e�ect on this analysis. The largest single uncertainty component509

is the statistical uncertainty (shown as a dark red line). This is larger than both the 1%510
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beam polarization uncertainty (light blue line), and either of the 1% or 2% uncorrelated511

systematic uncertainty assumptions (solid and dotted blue lines, respectively). When we512

switch to the high-luminosity (HL-EIC) scenario (dotted red line), the statistical uncertainty513

becomes comparable to the systematic ones. All uncertainties are signi�cantly smaller than514

the predicted value of the asymmetry, shown as the solid black line in the plots.515

FIG. 6. Comparison of the uncertainty components for the data set D4 in the valence-only scenario

(ud) and with the contributions from the sea quarks (uds). Here "NL" refers to the currently

planned annual luminosity of the EIC, while "HL" refers to a possible ten-fold luminosity upgrade.

In Fig. 7, we display the di�erent contributions to the diagonal entries of the uncertainty516

matrix of the data sets P5 and �P5. The pattern of uncertainties for P5 is very similar517

to that observed for D4. The statistical ones are the largest single uncertainty source,518

while the PDFs are the smallest. Assuming high luminosity, the statistical uncertainties519

become comparable to the anticipated systematic ones. The pattern is di�erent for �P5:520

the statistical uncertainties are largest for all bins, even assuming high luminosity. The PDF521

uncertainties are also non-negligible, consistent with the expectation that spin-dependent522

PDFs are not known as precisely as spin-independent ones. The anticipated experimental523
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systematic uncertainties are negligible for all bins.524

FIG. 7. Uncertainty components for the P5 and �P5 data sets.

Finally, we show in Fig. 8 the individual uncertainties for the electron-positron asymmetry525

data set LP5. The error budget is di�erent for this scenario compared to PV asymmetries.526

Since both beams are unpolarized, there is no uncertainty related to beam polarization.527

However, since electron and positron runs occur with di�erent beams there is the possi-528

bility of a signi�cant overall luminosity di�erence between the two runs that can lead to529

an apparent asymmetry. We assume an absolute 2% uncertainty, two times the luminosity530

uncertainty requirement of [9]. Finally, we consider the possible errors arising from higher-531

order QED corrections that may di�erentiate between electron and positron scattering. We532

estimate this uncertainty by taking 5% of the di�erence between the Born-level and NLO533

QED results, obtained usingDjangoh. The two largest sources of uncertainty through-534

out the entire kinematic range are the luminosity and the statistical uncertainties. PDFs,535

higher-order QCD, and the anticipated systematic uncertainties are all signi�cantly smaller.536

Summarizing all �gures presented in this section, we can make the following main points:537

ˆ The expected statistical uncertainties are the dominant ones for the nominal EIC538
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FIG. 8. The same as in Fig. 7 but for LP5.

luminosity. If a high luminosity (HL-EIC) upgrade becomes possible, they become539

comparable to experimental systematic uncertainties for PV asymmetries of the un-540

polarized hadron,A (e)
P V .541

ˆ PDF uncertainties are nearly irrelevant for the asymmetries of unpolarized hadrons542

A (e)
P V . They become signi�cant, second to statistical uncertainties, for PV asymmtery543

of polarized hadronsA (H )
P V .544

ˆ The luminosity e�ect dominates the statistical uncertainty for the majority of the545

phase space in the case of electron-positron asymmetriesALC;H , particularly at low x546

and low Q2. On the other hand, uncertainty from higher-order QED corrections are547

expected to be small.548

2. Total uncertainties for nominal luminosity vs. high luminosity549

We now investigate the total uncertainties for the data sets D4, �D4, P5, �P5. We550

consider four di�erent scenarios: nominal luminosity planned for the EIC or a ten-fold high551

luminosity upgrade, combined with 1% or 2% relative experimental systematic uncertainties552

due to particle background. We show the results in Figs. 9 and 10. We �rst observe that the553

dominant uncertainty component in all cases is statistical. The four uncertainty scenarios,554

namely 1% or 2% systematic uncertainty with nominal or high luminosity, can be in fact555
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reduced to just the luminosity comparison, i.e. nominal vs. high. Next, for both D4 and556

P5, the asymmetriesA (e)
P V are measured to percent-level throughout the considered phase557

space. This is not the case for the polarized sets �D4 and �P5. Particularly in the �P5558

scenario, at lowerQ2, the anticipated errors are larger than the asymmetry for all choices of559

systematic error and luminosity. Only in the very highQ2 bins does a measurement of the560

asymmetry A (H )
P V become meaningful.561

FIG. 9. Total uncertainties combined in quadrature for the data sets D4 and �D4 in the uds

scenario.

Our evaluation of the uncertainties indicate that using 1% or 2% relative systematic562

uncertainties makes practically no di�erence, as the total errors are mostly dominated by563

the statistical uncertainties for the PV asymmetries or the luminosity di�erence for the LC564

asymmetries. We also show that one can take into account the contribution of only the565

valence quarks to the asymmetries or include the sea quarks up to strange avor and its566

antiquark, both of which lead to the same size and rank of PDF errors for the data sets567

under consideration. In our best-�t analyses we thus focus on the data sets with 1% relative568

systematic uncertainty and nominal luminosity in theuds scenario. Comparisons will be569
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FIG. 10. The same as in Fig. 9 but for P5 and �P5.

performed with the ones having high luminosity, keeping the rest of the con�guration the570

same.571

V. EXTRACTION OF THE SM WEAK MIXING ANGLE572

The weak mixing angle, often represented as sin2 � W , is a fundamental parameter of the573

SM and has been measured in experiments ranging from atomic parity violation at eV energy574

levels, to high energy colliders at theZ-pole. The EIC will provide constraints on sin2 � W575

in the intermediate energy range that resides between the reach of �xed-target and collider576

facilities. For the extraction of the weak mixing angle, we focus onA (e)
P V where sin2 � W577

enters through the electron couplingge
V;A and quark couplings in the structure functions. If578

including all target-mass correction terms, we can write579

AP V = (54)

jPej� Z

h
ge

A 2yF Z
1 + ge

A

�
2

xy � 2
x � 2M 2xy

Q2

�
F Z

2 + ge
V (2 � y)F Z

3

i

2yF 
1 +

�
2

xy � 2
x � 2M 2xy

Q2

�
F 

2 � � Z

h
ge

V 2yF Z
1 + ge

V

�
2

xy � 2
x � 2M 2xy
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�
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where M is the nucleon mass. Note that given the moderateQ2 values of the EIC, the580

pure-Z contribution to the structure functions has been omitted for the precision relevant581

to our analysis.582

The running value of sin2 � W = 0:231 was used in the pseudo-data generation and only583

one pseudo data set was produced. We then �t the value of sin2 � W by minimizing the � 2
584

de�ned as585

� 2 = [ A pseudo� data � A theory ][(� 2)� 1][A pseudo� data � A theory ]T (55)

where A is a dimension-Nbin vector with Nbin the total number of (x; Q2) bins, � 2 is the586

uncertainty matrix of dimension Nbin � Nbin , described in Section IV C, and the sin2 � W to587

be �tted enters A theory . The PDF portion of the uncertainty matrix was evaluated using the588

CT18NLO [10] (LHAPDF [11] ID 14400{14458), MMHT2014nlo68cl [12] (ID 25100{25150)589

and NNPDF31 nlo as 0118 [7] (ID 303400{303500) PDF sets.590

Our results for sin2 � W are shown in Tables III and IV for �ve energy and nominal annual591

luminosity combinations for ep and eD collisions, respectively. These results are illustrated592

in Fig. 11. The inner error bars show the combined uncertainty from statistical and 1%593

uncorrelated experimental systematics (due to particle background); the median error bars594

show the experimental uncertainty that includes statistical, 1% uncorrelated experimental595

systematics, and 1% electron polarimetry. The outer-most error bars (which almost coincide596

with the median error bars) include all the above and the PDF uncertainty evaluated using597

the CT18NLO sets. Results evaluated with the MMHT2014 and NNPDF31NLO sets are598

similar. Along with our projection with EIC annual nominal luminosity, we show the \YR599

reference point" (blue diamond), obtained from combining 100 fb� 1 ep 18� 275 GeV and600

10 fb� 1 eD 18� 137 GeV pseudo-data. Also shown are the expected precision from near-601

future P2 [13], MOLLER [14] and SoLID [15] PVDIS [16, 17] experiments, respectively, that602

will dominate the landscape of low to medium energy scales.603

We note that our results have larger uncertainties than in the YR [6] that �tted PDFs604

and sin2 � W simultaneously using the JAM framework [18], possibly due to using realistic de-605

tector simulation and accurate running conditions. On the other hand, we found that PDF606

uncertainties are likely not a dominant uncertainty for EIC projections, but the electron607

polarization is, for settings where the integrated luminosity approaches 100 fb� 1. Conse-608

quently, upgrading the luminosity of EIC does not bring signi�cant improvement on the609
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uncertainty of sin2 � W and therefore we will not show our �tting results for the ten-fold610

luminosity upgrade.611

Beam type and energy ep 5 � 100 ep 10� 100 ep 10� 275 ep 18� 275 ep 18� 275

Label P2 P3 P4 P5 P6

Luminosity (fb � 1) 36.8 44.8 100 15.4 (100 YR ref)

hQ2i (GeV2) 154.4 308.1 687.3 1055.1 1055.1

hAP V i (Pe = 0 :8) � 0:00854 � 0:01617 � 0:03254 � 0:04594 � 0:04594

(dA=A)stat 1.54% 0.98% 0.40% 0.80% (0.31%)

(dA=A)stat+syst(bg) 1.55% 1.00% 0.43% 0.81% (0.35%)

(dA=A)1%pol 1.0% 1.0% 1.0% 1.0% (1.0%)

(dA=A)tot 1.84% 1.42% 1.09% 1.29% (1.06%)

Experimental

d(sin2 � W )stat+syst(bg) 0.002032 0.001299 0.000597 0.001176 0.000516

d(sin2 � W )stat+syst+pol 0.002342 0.001759 0.001297 0.001769 0.001244

with PDF

d(sin2 � W )tot ;CT18NLO 0.002388 0.001807 0.001363 0.001823 0.001320

d(sin2 � W )tot ;MMHT2014 0.002353 0.001771 0.001319 0.001781 0.001270

d(sin2 � W )tot ;NNPDF31 0.002351 0.001789 0.001313 0.001801 0.001308

TABLE III. Projected PVDIS asymmetry and �tted results for sin 2 � W using ep collision data

and the nominal annual luminosity. Here hQ2i denotes the value averaged over all (x; Q2) bins,

weighted by (dA=A) � 2
stat for each bin. The electron beam polarization is assumed to be 80% with

a relative 1% uncertainty. The total (\tot") uncertainty is from combining all of statistical, 1%

systematic (background), 1% beam polarization, and the PDF uncertainty evaluated using three

di�erent PDF sets. The right-most column is for comparison with the YR.

Our results show that the EIC will provide determination of sin2 � W at an energy scale612

that bridges higher energy colliders with low to medium-energy SM tests. Additionally,613

data points of di�erent
p

s values of EIC can be combined, or theQ2-dependence of the EW614

parameter can be explored, depending on the runplan of the EIC. Furthermore, one could615

study the exploratory potential of EIC beyond the scope of a single SM parameter, and we616
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FIG. 11. Projected results for sin2 � W using ep (top, solid magenta markers) and eD (bottom,

solid cyan markers) collision data and the nominal annual luminosity given in Table 10.1 of the

Yellow Report [6], along with existing world data (red solid circles) and hear-future projections

(green diamonds), see text for details. Data points for Tevatron and LHC are shifted horizontally

for clarity. The script used to produce this plot was inherited from [19], and the scale dependence

of the weak mixing angle expected in the SM (blue curve) is de�ned in the modi�ed minimal

subtraction scheme (MS scheme) [20].
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Beam type and energy eD 5 � 100 eD 10� 100 eD 10� 137 eD 18� 137 eD 18� 137

Label D2 D3 D4 D5 N/A

Luminosity (fb � 1) 36.8 44.8 100 15.4 (10 YR ref)

hQ2i (GeV2) 160.0 316.9 403.5 687.2 687.2

hAP V i (Pe = 0 :8) � 0:01028 � 0:01923 � 0:02366 � 0:03719 � 0:03719

(dA=A)stat 1.46% 0.93% 0.54% 1.05% (1.31%)

(dA=A)stat+bg 1.47% 0.95% 0.56% 1.07% (1.32%)

(dA=A)syst;1%pol 1.0% 1.0% 1.0% 1.0% (1.0%)

(dA=A)tot 1.78% 1.38% 1.15% 1.46% (1.66%)

Experimental

d(sin2 � W )stat+bg 0.002148 0.001359 0.000823 0.001591 0.001963

d(sin2 � W )stat+bg+pol 0.002515 0.001904 0.001544 0.002116 0.002414

with PDF

d(sin2 � W )tot ;CT18 0.002558 0.001936 0.001566 0.002173 0.00247

d(sin2 � W )tot ;MMHT2014 0.002527 0.001917 0.001562 0.002128 0.002424

d(sin2 � W )tot ;NNPDF31 0.002526 0.001915 0.001560 0.002127 0.002423

TABLE IV. Projected PVDIS asymmetry and �tted results for sin 2 � W using eD collision data and

the nominal annual luminosity. The uncertainty evaluation is the same as Table III.

provide results using the SMEFT framework in the next section.617
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VI. FRAMEWORK FOR THE SMEFT ANALYSIS618

A. Data Generation and Selection619

We use the procedure described in Section III to determine the uncertainty of our data620

projection and the uncertainty matrix. We consider bothepand eD collisions and we focus621

on the two highest-energy settings listed in Table II. Because collisions with higher center-622

of-mass energy are more sensitive to SMEFT operators, we choose four data families with623

the two highest
p

s to focus on:624

18 GeV� 100 GeVeD 100 fb� 1: D4, �D4, LD4

18 GeV� 137 GeVeD 15.4 fb� 1: D5, �D5, LD5

18 GeV� 100 GeVep 100 fb� 1: P4, �P4, LP4

18 GeV� 275 GeVep 15.4 fb� 1: P5, �P5, LP5 :

For the highest
p

s but lower-luminosity families D5, LD5, P5 and LP5 we consider two data625

sets: the nominal luminosity as indicated above and in Table II, and the high luminosity626

option denoted with an \HL" label with ten-fold higher statistics.627

We use Eq. (44) to generateNexp = 1000 pseudodata sets for each of the data families.628

We then impose the following selection criteria onx and Q2, and the inelasticity y:629

x < 0:5; Q2 > 100 GeV2; 0:1 < y < 0:9: (56)

These restrictions are designed to remove large uncertainties from non-perturbative QCD630

and nuclear dynamics that occur at lowQ2 and high x, where sensivity to SMEFT e�ects631

is anyways expected to be reduced. We note that the condition ony was already applied in632

the data generation and unfolding stage as described in Section III B.633

B. Structure of the SMEFT asymmetry corrections634

In the computation of SMEFT asymmetry values,ASMEFT , we use the central mem-635

ber of the PDF set under consideration. We use PDF setsNNPDF31nlo as 0118 [21] and636

NNPDFpol11100 [8] for the computation of unpolarizedA (e)
P V and polarizedA (H )

P V PV asym-637

metries, respectively. We factor out the ultraviolet (UV) cut-o� scale from all the seven638

Wilson coe�cients, Ck ! Ck=� 2
UV , and set � UV = 1 TeV. Kaan: We focus on one or two639
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Wilson coe�cients at a time for simplicity of presentationWe turn on only one or two Wilson640

coe�cients at a time and set the remaining ones to zero and linearize SMEFT expressions641

with respect to the Wilson coe�cient(s) of interest. SMEFT asymmetry expressions then642

generically take the form643

ASMEFT (x; Q2) = A theo
SM;0(x; Q2) + C� (x; Q2) (57)

or644

ASMEFT (x; Q2) = A theo
SM;0(x; Q2) + C1� 1(x; Q2) + C2� 2(x; Q2): (58)

Comparing Eq. (57) to (44) or (45), we see that at the end of a multi-run analysis, the645

distribution of the best-�t values for any single Wilson coe�cient should be a Gaussian646

centered at the origin.647

C. Best-�t analysis of Wilson coe�cients648

Generating pseudo-data values,Apseudo
SM and obtaining the SMEFT asymmetry expres-649

sions,ASMEFT , we de�ne a � 2 test statistic as650

� 2 =
NbinX

b=1

NbinX

b0=1

h
ASMEFT ;b � Apseudo

SM;b

i
[(� 2)� 1]bb0

h
ASMEFT ;b0 � A0pseudo

SM;b

i
(59)

whereNbin is the number of bins in a given data set. Generically, it will look like651

� 2(C) = k0 + k1C + k2C2 (60)

for a single-parameter �t of Wilson coe�cient C, or652

� 2(C1; C2) = k00 + k10C1 + k01C2 + k11C1C2 + k20C2
1 + k02C2

2 (61)

for a two-parameter �t of Wilson coe�cients C1 and C2. The � 2 function is minimized with653

respect toC or to C1 and C2. This gives us the best-�t values, �C or �C1 and �C2. We obtain654

the inverse square of the error of the single-parameter best-�t value via655

1
� 2

C
=

1
2

d2� 2

dC2
(62)

evaluated at �C. The inverse covariance matrix,V � 1, of the two-parameter �t is constructed656

in such a way that its ij th component is given by657

(V � 1) ij =
1
2

@�2

@Ci @Cj
(63)
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for i; j = 1; 2, evaluated at the best-�t values ofC1 and C2. Inverting V � 1, we obtain the658

individual errors and the correlation of the �t:659

V =

0

@� 2
1 � 12� 1� 2

� 2
2

1

A

sym

(64)

1. Averaging over multiple pseudodata sets660

When we repeatNexp times the single-parameter best-�t analysis described in Sec. VI C,661

we obtain Nexp best-�t values, �Ce, with corresponding uncertainties,� C;e, for each pseudo-662

experiment e. The mean of the best-�t values is obtained by averaging individual best-�t663

values weighted by the inverse square of the uncertainties:664

�C =

 NexpX

e=1

1
� 2

C;e

! � 1  NexpX

e=1

1
� 2

C;e

�Ce

!

; (65)

and the average uncertainty of this mean value is obtained via665

1
� 2

C
=

1
Nexp

NexpX

e=1

1
� 2

C;e
: (66)

When we repeatNexp times the two-parameter best-�t analysis on Wilson coe�cients de-666

scribed in Sec. VI C, we obtainNexp pairs of best-�t values, �C1;e and �C2;e, and inverse667

covariance matrices, (V � 1)e, for each pseudo-experiment,e. The best-�t values are averaged668

similarly to the one-dimensional case but with the inverse square of uncertainties replaced669

by inverse covariance matrices:670

0

@
�C1

�C2

1

A =

" NexpX

e=1

(V � 1)e

#� 1 2

4
NexpX

e=1

(V � 1)e

0

@
�C1;e

�C2;e

1

A

3

5 : (67)

The average inverse covariance matrix of the resultant best �t is calculated using671

V � 1 =
1

Nexp

NexpX

e=1

(V � 1)e : (68)

We note the presence of the factor 1=Nexp in Eqs. (66) and (68). Without it, we would be672

e�ectively increasing the luminosity of the corresponding central data set by factorNexp. We673

avoid this by including this factor in computing the average uncertainty or inverse covariance674

matrix.675
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2. De�nition of con�dence intervals676

The result of a single-parameter multi-run �t can be expressed as677

(C � �C)2

� 2
C

= � � 2 (69)

so we can express the �tted result and the uncertainty of coe�cientC as678

C = Cbest �
p

� � 2� C : (70)

For a two-parameter multi-run �t, the ellipse equation reads679

0

@C1 � �C1

C2 � �C2

1

A

T

V � 1

0

@C1 � �C1

C2 � �C2

1

A = � � 2 (71)

in the (C1; C2) plane. The � � 2 values that determines the size of the best-�t interval for an680

arbitrary con�dence level are well-known. For 95% CL, we have �� 2 = 3:841, 5:991, and681

7:815 for one-, two-, and three-parameter �ts, respectively.682

3. Combination of best-�ts from distinct data sets683

Suppose we have two data sets, say T1 and T2, from which we obtain the single-parameter684

best-�t values of Wilson coe�cient, C, to be �CT1 and �CT2 , together with the errors� C;T1 and685

� C;T2 . Assuming the said data sets can be treated uncorrelated to a good approximation,686

we obtained the combined best-�t value and the corresponding uncertainty by using Eqs.687

(65) and (66) with slight modi�cations. Firstly, the summation index e now runs from688

1 to 2, representing number of data sets. Secondly, the 1=Nexp factor should be removed689

from Eq. (66) because we now have indeed two independent (uncorrelated) measurements.690

This method can be generalized to the combination of the best-�t values from more than691

two data sets such as di�erent beam energies, and to the case of multi-parameter �ts in a692

straightforward manner.693

4. Simultaneous �t of Wilson coe�cients and beam polarization or luminosity di�erence694

We observed in Section IV D that experimental uncertainties such as the beam polariza-695

tion and luminosity di�erence betweene+ and e� runs can be limiting factors for some of696
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the data sets. When the data statistical uncertainty is very precise, there is the possibil-697

ity that one could use data themselves to constrain these systematic e�ects. We present698

in Appendix A 2 a method to simultaneously �t the SMEFT coe�cient(s) and the beam699

polarization for PV asymmetries, and in Appendix A 1 a method to simultaneously �t the700

SMEFT coe�cient(s) and the luminosity di�erence for the LC asymmetries.701

VII. SMEFT FIT RESULTS702

A. Fits of single Wilson coe�cients703

In this section, we discuss the 95% CL intervals for the Wilson coe�cients in single-704

parameter �ts averaged over 1000 pseudo-experiments. The bounds on the Wilson coe�-705

cient Ceu across numerous data sets are representative and exhibit the common features of706

single-parameter �ts. We therefore show only the bounds onCeu to illustrate the main ob-707

servations and include the remaining Wilson coe�cients in Appendix B 1. Figure 12 displays708

the 95% CL intervals ofCeu for the four data families in which we are primarily interested709

in this paper. The intervals are grouped by asymmetries, namely electron PV asymmetries710

A (e)
P V of unpolarized hadrons (\unpolarizedAPV "), hadron PV asymmetriesA (H )

P V with unpo-711

larized electrons (\polarizedAPV "), and unpolarized electron-positron asymmetriesALC;H712

of unpolarized hadrons (\lepton-chargeA"). PV asymmetries are then grouped into two,713

showing the �ts in the nominal- and high-luminosity scenarios. In each block of intervals,714

there are four double lines in the case of PV asymmetries and four single lines in LC asym-715

metries. These four lines correspond to the data families D4 (black and its shades), D5 (red),716

P4 (blue), and P5 (orange). The darker of the two lines indicate the bounds from single-717

parameter �ts with the Wilson coe�cient Ceu, whereas the lighter ones show the bounds718

on the said Wilson coe�cient from simultaneous (1 + 1)-parameter �ts with Ceu and the719

beam polarization. We describe the details of the �ts involving the beam polarization as an720

additional free variable in Appendix A 2.721

40



FIG. 12. 95% CL bounds ofCeu from single-parameters �ts (darker) and from the (1+1)-parameter

�ts with beam polarization as an additional �tting parameter (lighter) using the families of data

sets D4, D5, P4, and P5 at � = 1 TeV.

From Fig. 12, we can extract the following main points.722

ˆ Proton asymmetries of all the three types, namely unpolarized and polarized PV asym-723

metries and LC asymmetries, impose considerably stronger bounds than deuteron.724

ˆ High-energy low-luminosity data sets D5 and P5 lead to slightly weaker bounds than725

the less energetic but higher-luminosity ones, D4 and P4, respectively.726

ˆ Unpolarized PV asymmetriesA (e)
P V o�er much stricter bounds than the polarized ones727

A (H )
P V ; however, it should be noted that for some Wilson coe�cients, unpolarized proton728

asymmetries yield nearly the same bounds as the corresponding polarized ones.729

ˆ Data sets in the high-luminosity scenario make a noticeable di�erence in the size of730

bounds. The improvement due to increased luminosity is slightly more signi�cant for731

polarized deuteron asymmetries.732

ˆ Bounds from electron-positron asymmetriesALC;H are comparable to or looser than733

the ones from polarized hadron asymmetries. Never do they o�er stricter bounds than734

high-luminosity hadron PV asymmetries.735

ˆ If introducing the beam polarization as a new free �tting parameter, unpolarized736

hadron asymmetries give considerably stronger bounds. The improvement is more737
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signi�cant in the high-luminosity scenario. However, the same �tting method yields738

weaker bounds with polarized hadron asymmetries.739

Assuming weak correlations, one can also combine the bounds within a given family of data740

sets, e.g. D4, �D4, and LD4. We �nd that the resultant bound is never stronger than741

the strongest one obtained from the individual family members, which is the electron PV742

asymmetry data.743

In Fig. 13, we present the e�ective UV cut-o� scales, �=
p

Ceu, with � = 1 TeV, corre-744

sponding to the bounds shown in Fig. 12. The organization of this plot in terms of asym-745

metries and data sets is the same as Fig. 12. Improved bounds onCeu with the addition of746

the beam polarization to the �ts are equivalent to higher energy scales in the unpolarized747

PV asymmetries, which are indicated by the lighter columns in the background; on the748

other hand, weaker bounds from the �ts with beam polarization are depicted by the lighter749

columns in the foreground for the polarized PV asymmetries.750

FIG. 13. E�ective UV cut-o� scales, � =
p

Ck , de�ned in terms of the 95% CL bounds on the Wilson

coe�cients and with � = 1 TeV.

One can observe that scales reaching 3 TeV can be probed with nominal luminosity, while751

scales exceeding 4 TeV can be probed for others. We remark that care must be taken in752

comparing these mass limits with others found in the literature, which sometimes assume a753

strong coupling limit equivalent to settingCi = 4� and assume also maximally constructive754

interference between di�erent quark contributions. For example, converting our results to755

the notation of [22] would yield a bound on �=
p

Ceu of 19 TeV, instead of 3 TeV quoted here,756

42



which is only very approximate and is calculated by multiplying 3 TeV by
p

4� and
p p

5,757

where the latter is to account for the constructive interference between quark contributions,758

and by another factor to convert 90% CL to 95% CL.759

B. Fits of two Wilson coe�cients760

In this section, we discuss �ts on pairs of Wilson coe�cients in order to determine how761

well the EIC can break degeneracies between parameters that occur in the LHC Drell-Yan762

data [23, 24]. We emphasize that just as we show only representative examples, these763

examples are from the simultaneous �ts with beam polarization in light of the results of764

the one-parameter �ts in the previous section. The description of the beam-polarization �ts765

is presented in Appendix A 2. The complete set of plots of con�dence ellipses are given in766

Appendix B 2.767

In Fig. 14, we compare the 95% CL ellipses for the pair (Ceu; Cqe) between the D4 and768

P4 data families. Each asymmetry type gives a distinct correlation pattern, complementary769

to one another. Electron-positron asymmetries give rise to wide and elongated, band-like770

ellipses compared to PV asymmetries. As in the case of one-parameter �ts, electron PV771

asymmetries of unpolarized hadrons o�er the strongest bounds on the pairs of Wilson coef-772

�cients. Comparing deuteron to proton, one can see that proton data are signi�cantly more773

constraining.774

Figure 15 shows the comparison of the simultaneous �t on the Wilson coe�cients775

(Ceu; C`u ) projected for the EIC to the corresponding �t with the LHC data adapted776

from [24]. The LHC �ts exhibit a at direction, i.e. a particular linear combination of the777

two coe�cients cannot be determined. A similar comparison is given in Fig. 16 for the778

pair (Ceu; C(1)
`q ), using the nominal- and high-luminosity P4 set of the EIC. We observe that779

in both �gures, projected EIC �ts have di�erent correlation patterns from the LHC. More780

importantly, the EIC projected data show the capability of resolving at directions and781

signi�cantly constraining the aforementioned pairs of Wilson coe�cients.782

Finally, in Fig. 17, we present �ts from the P4 data set and the LHC adapted from [23],783

for the pair (C(1)
`q ; C(3)

`q ). This �gure shows that when the LHC data imposes tight bounds784

on a pair of Wilson coe�cients, the EIC preliminary data can introduce far stronger bounds785

on the same pair of Wilson coe�cients. Moreover, �ts from EIC and LHC have distinct786
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FIG. 14. 95% CL ellipses for the Wilson coe�cients Ceu and Cqe using the families of data sets D4

and P4 in the simultaneous (2 + 1) �ts that includes the beam polarization as an additional free

�tting parameter.

correlations, which indicates the complementarity of the EIC to the LHC as a future collider.787

Treating the projected EIC and the LHC data to be uncorrelated, we also plot the combined788

�t of the two, which turns out to even more strongly constrain the chosen pair of Wilson789

coe�cients. We remark that the e�ective UV scales probed with the combined data set790

exceed 2 TeV.791

It should be noted that there appear at directions in the �ts of certain pairs of Wilson792

coe�cients with the projected EIC data that utilize the deuteron beam. Examples include793

(Ceu; Ced) and (C`u ; C`d ). We can explain these observations analytically. We �nd that794

these pairs always appear in a speci�c way in asymmetry expressions; to wit, 2Ceu � Ced for795

electron PV asymmetries with unpolarized deuteron. In all such cases only one of the data796

families exhibits this behavior, with the degeneracy broken by another data family.797

Our results on the bounds from Wilson coe�cients in simultaneous (2+1)-parameter �ts798

with the beam polarization as an additional parameter can be summarized as follows:799

ˆ Proton asymmetries impose much stricter bounds than deuteron.800

ˆ Unpolarized hadron asymmetries lead to stronger correlations than polarized ones.801
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FIG. 15. 95% CL ellipses for the Wilson coe�cients Ceu and Cqe using the data sets D4 and P4

in the (2 + 1) �t that includes the beam polarization as an additional �tting parameter, compared

with the corresponding two-parameter �t from the LHC data [24].

ˆ The three types of asymmetries of deuteron and proton considered in this work, to-802

gether with the LHC data, are complementary to each other in the sense that they803

o�er distinct correlation patterns.804

ˆ The projected EIC data are capable of resolving all at directions that appear in the805

LHC Drell-Yan data.806

ˆ The bounds from the projected EIC data can be much stronger than the LHC data,807

advertising the EIC as an excellent future collider.808

VIII. CONCLUSIONS809

In this manuscript we have analyzed the potential of testing the electroweak SM and810

exploring BSM physics of the future EIC. We have focused on the precision determination811

of the weak mixing angle over a wide range of momentum transfers, and probes of heavy new812

physics. We have provided all formulae for NC DIS and simulation details that will be needed813

for future studies of these areas. Our BSM analysis utilizes the model-independent SMEFT814
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FIG. 16. 95% CL ellipses for the Wilson coe�cients Ceu and C(1)
`q using the nominal- and high-

luminosity data set P4 in the (2+1) �t that includes the beam polarization as an additional �tting

parameter, compared with the corresponding two-parameter �t from the LHC data [23].

framework, and focuses on the semi-leptonic four-fermion operator sector of the theory. We815

translate our formalism into the DIS language in terms of parity couplings and structure816

functions to facilitate communication between the high energy and medium energy physics817

communities. We provide a detailed accounting of uncertainties from statistics, experimental818

systematic e�ects, beam polarimetry for PV asymmetries, QED higher-order corrections for819

LC asymmetries, and �nally from PDFs. Additionally, we explore simultaneously �tting820

the beam polarization with the anticipated high-precision PV asymmetry data as a possible821

analysis technique to improve upon the experimental limitation from beam polarimetry.822

Our BSM analysis �nds that UV scales in excess of 3 TeV can be probed with the currently823

planned (nominal) annual luminosity of the EIC, with scales above 4 TeV possible with a824

ten-fold high luminosity upgrade. The most stringent bounds come from polarized electron825

scattering o� of unpolarized protons. Constraints from polarized hadrons, deuterons, and826

from a possible future positron beam provide important complementary probes. Our com-827

plete study of correlations between Wilson coe�cients �nds that no degeneracies remain828

upon combining all EIC data sets. This is not the case with LHC Drell-Yan measurements,829

in which numerous degneracies exist, and will continue to occur even after LHC's high lu-830
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FIG. 17. 95% CL ellipses for the Wilson coe�cients C(1)
`q and C(3)

`q using the nominal-luminosity

data set P4 in the (2+1) �t that includes the beam polarization as an additional �tting parameter,

compared with the corresponding �t from the LHC data [23], and the combined �t of the two.

minosity running. This demonstrates that although the EIC is primarily thought of as a831

QCD machine, it is in fact a powerful probe of potential BSM e�ects with a broad coverage832

of heavy new physics parameter space, and is in many ways competitive with the higher833

energy LHC. We hope that our work motivates future studies of the unexpected power of834

the EIC for new physics searches.835
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Appendix A: Additional �ts836

1. Luminosity di�erence �ts837

Since electron and positron data would be taken at di�erent times with di�erent beam838

con�gurations, there is the possibility of a signi�cant o�set between the absolute luminosities839

of the two data sets. In the main text, we include this uncertainty in the error matrix as840

the luminosity error, � lum = 0:02, which is assumed absolute. We study here the possibility841

of simultaneously �tting this luminosity di�erence together with the Wilson coe�cients.842

We �t the pseudodata for the LC asymmetries with an overall shift,A lum , added to the

pseudo-data. Then, we de�ne the� 2 test statistics as

� 2 =
NbinX

b=1

NbinX

b0=1

[ASMEFT ;b � Apseudo
SM;b ][( ~� 2)� 1]bb0[ASMEFT ;b0 � Apseudo

SM;b0 ] (A1)

where we omit the uncertainty in the luminosity di�erence betweene+ and e� runs from

the uncertainty matrix:

~� 2 = � 2
�
�
� lum ! 0

: (A2)

However, we keep the luminosity uncertainty in the pseudo-data generation. By introducing843

the luminosity di�erence, A lum , as a new variable, we extend our one-parameter and two-844

parameter Wilson-coe�cient �ts to (1 + 1)-parameter and (2 + 1)-parameter �ts.845

We �nd that there are mild correlations, j� k j . 0:4, betweenA lum and any Ck in the846

(1 + 1) and (2 + 1) �ts. In addition, the �tted results for Wilson coe�cients have slightly847

larger uncertainty when the luminosity di�erence is treated as a �tting parameter. In Fig.848

18, we show the 95% CL intervals with and withoutA lum for the Wilson coe�cient Ceu in all849

the four LC asymmetry data sets. In Fig. 19, we compare the 95% CL ellipses of the Wilson850

coe�cients ( Ceu; Cqe) with the data sets LD4 and LP5 with and without the luminosity851

di�erence as a �tted parameter. From these �gures, we see that the 95% CL bounds onCeu852

become 15 to 20% weaker. The di�erence is less noticeable in the con�dence ellipses.853

2. Beam polarization �ts854

In the same spirit as the previous section, we now consider �tting the beam polarization

simultaneously with the Wilson coe�cients in an attempt to reduce the uncertainty asso-
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FIG. 18. Comparison of the bounds in single-parameter �ts of Wilson coe�cient Ceu with all the

LC asymmetry data sets in the absence and presence of the luminosity di�erence as a new free

�tting parameter.

ciated with the experimental limitation from beam polarimetry. We �t the pseudodata for

the PV asymmetries by including a factor ofP in the SMEFT asymmetries. We then de�ne

a � 2 test statistics as

� 2 =
NbinX

b=1

NbinX

b0=1

[PASMEFT ;b � Apseudo
SM;b ][( ~� 2)� 1]bb0[PASMEFT ;b0 � Apseudo

SM;b0 ] +
(P � �P)2

�P 2
: (A3)

In this approach, we omit the beam polarization uncertainty,� pol , from the uncertainty

matrix because it is now treated as a �tting parameter:

~� 2 = � 2
�
�
� pol ! 0

; (A4)

but not during pseudo-data generation. The second term on the RHS of Eq. (A3) is added855

by hand, where �P and �P are the beam polarization value and its uncertainty provided856

by the polarimetry, presumably uncorrelated to the asymmetry measurements. The logic857

behind this addition is that experimentally, the polarimetry does provide knowledge on the858

beam polarization, but we hope to obtain a better determination of the polarizations within859

the uncertainty provided by the polarimetry, by �tting data with high statistical precision.860

As for the beam polarization itself, we use a normalized value of�P = 1 in this study for861

simplicity. Treating the new term to be the contribution of a new observable, we increase the862

degrees of freedom of the� 2 distribution by 1. As in the case of luminosity di�erence �ts,863
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FIG. 19. Comparison of the 95% CL ellipses for the Wilson coe�cients (Ceu; Cqe) with the data

sets LD4 and LP5 in the absence and presence of the luminosity di�erence as an additional free

�tting parameter.

we extend our 1- and 2-parameter �ts of Wilson coe�cients to (1+1)- and (2+1)-parameter864

simultaneous �ts by including the beam polarization as a new variable.865

From (1 + 1) �ts, we �nd that P and any Ck are rather weakly correlated,j� k j . 0:1,866

in the polarized hadron data sets, whereas there are strong correlations,j� k j & 0:7, in the867

unpolarized hadron asymmetries. We observe similar correlations in the (2 + 1) �ts.868

In Fig. 20, we present the allowed intervals of the Wilson coe�cientCeu for the nominal-869

and high-luminosity data sets P4 and �P4, while Fig. 21 displays the 95% CL ellipse of the870

Wilson coe�cients ( Ceu; Cqe) for the same data sets in the nominal-luminosity scenario. We871

�nd that bounds from unpolarized hadron data sets become stronger by 30 to 50%, yet the872

ones from polarized hadron asymmetries become 15 to 20% weaker. The improvement is873

sharper in the high-luminosity unpolarized hadron sets, whereas the worsening is signi�cant874

for the nominal-luminosity polarized hadron sets.875
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FIG. 20. 95% CL bounds on the Wilson coe�cient Ceu with the nominal- and high-luminosity

data sets P4 and �P4 in the absence and presence of the beam polarization,P, as an additional

free variable in the �ts.

FIG. 21. 95% CL ellipse of the Wilson coe�cients Ceu and Cqe for the data sets P4 and �P4 in

the absence and presence of the beam polarization,P, as a new free variable in the �ts.

One can explain why the bounds become weaker in the polarized hadron sets by referring876

51



to the correlations. Since in these data sets, the beam polarization and the Wilson coe�cients877

are found to be weakly correlated, one would naively expect the bounds obtained from single-878

parameter �ts of Wilson coe�cients to roughly remain the same on the grounds thatP and879

Ck can be thought of almost fully independent so that they will not a�ect each other in the880

�ts. Thus, any increase in the allowed limits of Wilson coe�cient can be attributed to the881

increase in the number of parameters �tted, which is reected as the normalization of the882

uncertainties of the �t.883

Appendix B: Complete set of �tted results on Wilson coe�cients884

1. Fits of single Wilson coe�cients885

In this section, we present the 95% CL intervals and the corresponding e�ective UV886

cut-o� scales for all the seven Wilson coe�cients in single-parameter �ts averaged over887

1000 pseudo-experiments. For the self-containment of this section, we remind the following888

abbreviations for the EIC preliminary data sets:889

ˆ electron PV asymmetriesA (e)
P V of unpolarized deuteron:890

{ D4: eD 10 GeV� 137 GeV, 100 fb� 1
891

{ D5: eD 18 GeV� 137 GeV, 15:4 fb� 1
892

ˆ electron PV asymmetriesA (e)
P V of unpolarized proton:893

{ P4: ep 10 GeV� 275 GeV, 100 fb� 1
894

{ P5: ep 18 GeV� 275 GeV, 15:4 fb� 1
895

ˆ hadron PV asymmetriesA (H )
P V with unpolarized electron: �D4, �D5, �P4, and �P5896

with the same energy and luminosity con�guration as the corresponding D- and P-sets897

ˆ unpolarized electron-positron asymmetries of unpolarized hadronsALC;H : LD4, LD5,898

LP4, and LP5 with the same energy con�guration as the corresponding D- and P-sets,899

but the luminosity of the positron beam is assumed to be 10 times smaller than that900

of the electron beam.901
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Figures 22{28 display the 95% CL bounds of each Wilson coe�cient for the four data902

families in which we are primarily interested in this work. As in the main part of the903

manuscript, the intervals are grouped by asymmetries, namely electron PV asymmetries of904

unpolarized hadronsA (e)
P V (\unpolarized APV "), hadron PV asymmetries with unpolarized905

electrons (\polarizedAPV "), and unpolarized electron-positron asymmetries of unpolarized906

hadronsALC;H (\lepton-charge A"). PV asymmetries are then grouped into two, showing907

the �ts in the nominal- and high-luminosity scenarios. The nominal luminosity (\NL")908

refers to the annual integrated luminosity of Table 10.1 of YR [6]. The high luminosity909

(\HL") is assumed to be 10 times higher than the nominal one and requires a luminosity910

upgrade of the EIC. In each block of intervals, there are four double lines in the case of PV911

asymmetries and four single lines in LC asymmetries. These four lines correspond to the912

data families D4 (black and its shades), D5 (red), P4 (blue), and P5 (orange). The darker of913

the two lines indicate the bounds from single-parameter �ts with the Wilson coe�cientCk ,914

whereas the lighter ones show the bounds on the said Wilson coe�cient from simultaneous915

two-parameter �ts with Ck and the beam polarization. The details of the �ts involving the916

beam polarization as an additional free variable are described in Appendix A 2.917

FIG. 22. 95% CL bounds ofCeu from 1-parameter �ts (darker) and from simultaneous (1 + 1)-

parameter �ts with beam polarization (lighter) using the families of data sets D4, D5, P4, and P5.
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FIG. 23. The same as in Fig. 22 but forCed.

FIG. 24. The same as in Fig. 22 but forC(1)
`q .

FIG. 25. The same as in Fig. 22 but forC(3)
`q .
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FIG. 26. The same as in Fig. 22 but forC`u .

FIG. 27. The same as in Fig. 22 but forC`d .

FIG. 28. The same as in Fig. 22 but forCqe.
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In Figs. 29{35, we present the e�ective UV cut-o� scales, �=
p

Ck , with � = 1 TeV,918

corresponding to the bounds shown in Figs. 22{28. The organization of these plots in terms919

of asymmetries and data sets is the same as the one in Figs. 22{28. Improved bounds on920

Ck with the addition of the beam polarization to the �ts are equivalent to higher energy921

scales in the unpolarized PV asymmetries, which are indicated by the lighter columns in922

the background; on the other hand, weaker bounds from the �ts with beam polarization are923

depicted by the lighter columns in the foreground for the polarized PV asymmetries.924

FIG. 29. E�ective UV cut-o� scales, � =
p

Ceu, de�ned in terms of the 95% CL bounds on the

Wilson coe�cient Ceu with � = 1 TeV. The darker columns in the foreground of unpolarized PV

asymmetries and in the background of polarized PV asymmetries indicate the results of single-

parameter �ts on the Wilson coe�cient, Ceu, where the lighter columns in the background of

unpolarized PV asymmetries and in the foreground of polarized PV asymmetries denote the results

of simultaneous (1 + 1)-parameter �ts of Ceu with the beam polarization, P.
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